
Appendix

A. Implementation Details

A.1. Model Structure

Transformer for Gaussian Deformation We use 2-layers
of transformer blocks, each with a cross-attention layer and
Feed-Forward layer. Unlike the vanilla transformer [13], we
use gated MLP [8] for the Feed-Forward layer.
Encoder Encoder is purely convolutional. It accepts both
our modified 8-dimensional Gaussian representations and
6-dimensional UV-based texture features. We obtain the
projection layer features from the encoder and the initial
input to StyleGAN, as seen in Fig. 8
Volumetric Projection Volumetric Projections utilizes only
two convolutions to fuse the 3D feature with the StyleGAN
intermediate features. Please see Fig. 8 for more information.
Triplane Generator We use a light-weight StyleGAN to
generate the Triplane for Gaussian representation. The struc-
ture is similar to EG3D [3]. The latent dimension is 64 as the
embedding for the frame index. During the self-reenactment
or cross-reenactment, we fixed the frame index to be 0 for
inference.

A.2. Training details

Training Strategy We applied StyleGAN-ADA’s geometric
transformation during the training to improve the robustness.
Fig. 9 shows the effectiveness of geometric transformation
applied to UV maps during training, which allows the model
to learn the relative position between the facial and the torso
regions based on the UV map. This strategy significantly
improves the self/cross-reenactment during extreme poses.
For unseen poses, without geometric transformation, the
generated portrait always contains a wrong facial shape.
Training/Inference Time To present a fair comparison be-
tween our methods and others, we present the training time
and inference time in Tab. 4 for volumetric rendering and
editing separately.

A.3. Editing details

We applied Instruct-Pixel2Pixel [2] (IP2P) as the guidance
tool for editing following Instruct-NeRF2NeRF [6]. We dis-
cover that the raw IP2P model does not present consistency
for different views. To address this problem, we first take
the novel view synthesis based on our model and feed these
data with sampled 200 images to IP2P for finetuning. The
finetuning process significantly improves the editing quality.

Method Training Time Inference Time
Reconstruction

IM-Avatar [18] 48h 0.1 fps
PointAvatar [18] 4h 15fps

INSTA [1] 2h 20fps
DVP [7] 12h 25fps

StyleAvatar [14] 6h 25fps
FlashAvatar [15] 0.5h 300 fps

SplattingAvatar [11] 0.5h 80fps
Next3D [12] 10h 20fps

StyleHeat [17] 8h 30fps
OTAvatar [9] 8h 20fps

Ours 2.5h 35fps
Editing

TokenFlow [5] 30 min 0.5 fps
RAV [16] 30 min 0.8 fps

CoDeF [10] 30 min 40fps
IN2N[6] + GaussianStyle 10 min 35 fps

Table 4. Training/Inference Time Comparison for avatar rendering
methods and editing methods

During editing, we freeze all other parameters except the
projection layers to the StyleGAN module.

B. Analysis of StyleGAN
We evaluate StyleGAN’s ability to generate animatable video
portraits, which involves capturing varying expressions, con-
tinuous facial motions, and cohesive upper body movement
during head rotations. Unlike the aligned images in the
pre-trained FFHQ dataset, animatable portraits are often un-
aligned and captured in diverse settings, with a variety of
head positions and orientations.

To assess StyleGAN’s effectiveness, we applied the GAN
inversion method on both aligned and unaligned portraits,
comparing the rendering results. This was crucial to de-
termine if StyleGAN could accurately represent a dynamic
portrait video. Our evaluation focused on frames showing
extreme left and right head poses from videos as inputs for
GAN inversion. This approach tested StyleGAN’s limits in
rendering realistic, continuous motion and its ability to cap-
ture the nuanced changes in facial orientation and expression.
The insights gained from this assessment were instrumental
in shaping the GaussianStyle framework, enhancing our un-
derstanding of the capabilities and limitations of StyleGAN
in animatable portrait generation.
Inability for Unaligned portrait generation In Figure 10,
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Figure 8. Both encoder and projections are purely convolutional. We obtain intermediate features from the encoder providing StyleGAN
with dynamic Gaussian representations

Figure 9. Geometric transformation helps improve the performance
of unseen novel views for self/cross-reenactment settings.

the linear interpolation of latent codes for extreme poses is
presented in two rows: the first for aligned and the second
for unaligned inversion. With aligned inversion, interpolat-
ing between two style codes yields images that maintain
texture quality and exhibit consistent, smooth transitions in
facial expressions and poses. This demonstrates StyleGAN’s
capability in handling aligned facial data. In contrast, the
unaligned inversion results reveal StyleGAN’s limitations.
When processing unaligned faces, particularly in the animat-
able portrait domain, the model struggles, leading to blurred
images. This blurring highlights its difficulty in accurately re-
constructing the complex, varied aspects of unaligned faces,

Left Pose Right PoseLinear Interpola-on

Figure 10. Interpolation of GAN inversion: Latent code interpola-
tion between extreme pose parameters along the x-axis for aligned
(upper) and unaligned (lower) video portraits.

including nuanced head movements and expressions. This
comparison underlines a key finding: while pre-trained Style-
GAN is effective for aligned facial portraits, it falls short in
encoding complete portraits with upper body information,
unable to capture the full range of portrait dynamics.
StyleGAN’s latent Space In addition, we discover that Style-
GAN can obtain a consistent neural representation of the
target avatar. From the first line in Figure 10, we observe
that even though only two images from extreme poses in
the left and right directions are used for GAN inversion,
StyleGAN is still capable of rendering relatively good inter-
mediate images when interpolating the latent codes. This
suggests that after GAN Inversion, the latent space encoded
in StyleGAN remains continuous, motion-aware, and can
be effectively sampled. Therefore, we can sample a small
number of images from the video to perform GAN inversion,
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Figure 11. Upper: Comparison with monocular video portrait rendering methods. Lower: Comparison with StyleGAN-based reenactment
methods. The comparison suggests that existing methods are unable to deal with unaligned faces and extreme poses.

thereby obtaining the video’s neural representation model.

C. Additional Experiments
In this section, we mainly present the comparison with the
NeRF-based or 2D or StyleGAN based models for self/cross-
reenactment.

C.1. Self/cross-reenactment

We further compared our method with the existing monoc-
ular video portrait rendering techniques, including Deep
Video Portrait (DVP) [7], INSTA [1], IM-Avatar [18]
and StyleGAN-based reenactment models, including Style-
HEAT [17], OTAvatar [9] and StyleAvatar [14]. Specifically,

OTAvatar and StyleHEAT are designed for aligned one-shot
reenactment. To adapt them to unaligned situations and for a
fair comparison, we finetuned their models on our video for
10 epochs. It takes about 1 day on a single A6000 to finish
fine-tuning.

Fig. 11 shows the comparison between our methods with
the existing NeRF-based and StyleGAN-based reenactment
methods. INSTA has bad predictions for the non-facial ar-
eas. IM-Avatar presents over-smoothing results. DVP uti-
lizs PNCC to Image translation, but struggles with the fine-
grained details. StyleHeat cannot deal with unaligned faces
and thus generates explicit artifacts during both self/cross-
reenactment. OTAvatar utilized a Triplane [3] for geometry-
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Figure 12. Next3D, after fine-tuning on target person video, is
deficient in domain transfer, as visualized by the artifact for mouth
regions.
aware 3D modeling of the target portrait. It cannot disentan-
gle the movement of heads from the torso area. StyleAvatar
stands out in cross-reenactment, while not as robust as our
methods in dealing with extreme poses.

C.2. Editing

For editing comparison, we further include Next3D [12].
Since it cannot deal with unaligned data, we crop the images
from videos. We fine-tuned Next3D on the cropped aligned
videos for a fair comparison.

In Fig.12, we apply StyleGAN-NADA[4] to Next3D fol-
lowing fine-tuning on the aligned target portrait videos. Un-
like Diffusion, the use of CLIP in Next3D does not ensure
consistent intensity for editing. Furthermore, in contrast to
our approach, which preserves StyleGAN’s domain general-
ization capability by training only the projection layers while
keeping StyleGAN frozen, our fine-tuning on Next3D dimin-
ishes its ability to render normal mouth areas, as evidenced
by explicit artifacts in these regions.

C.3. Novel View Synthesis

We present the novel view results for 3D geometry evalua-
tions. In case our method is trained on a short monocular
portrait video without multi-view inputs, we range the recon-
structed results under the viewpoints ranging from -30◦ to
+30◦, as shown in Fig. 13, the novel views maintain good
visual quality within the range.

D. Baseline Details
D.1. Self/cross-reenactment

To demonstrate the fairness of our comparison with the base-
lines, we provide specific details on the various baselines
and indicate how they differ from the original reports. Since
part of the methods do not release source code, we reproduce
them by ourselves with fairness.
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Figure 13. Our reconstruction and editing is consistent for novel
views under various conditions.

FlashAvatar We adopt tracking parameters given by the
authors and implement the training following the official
GitHub repo.
PointAvatar and IM-Avatar The Point-Avatar [19] and IM-
Avatar [18] shares the same data preprocessing. We follow
the official report to perform the reconstruction.
SplattingAvatar This work adopts the same data preprocess-
ing as in the previous two, we follow the official GitHub
repo to reimplement the code.
INSTA We follow the provided official pipeline in the report.
StyleAvatar We reprocess our data via the FaceVerse in
StyleAvatar and retrain it from the code in the official repo.

D.2. Portrait Editing

We compared our method with both guidance-based and
video-based editing methods. Given the limitations of
CoDEF and TokenFlow in handling long video sequences
and the increasing GPU memory requirements with video
length, respectively, we standardized our evaluation on 3-
second video segments, roughly comprising 75 frames for a
balanced comparison.
TokenFlow It first did inversion and then editing. We fol-
lowed the official code provided by TokenFlow [5] for data
preprocessing and editing.
Rerender-A-Video We apply the same prompt as that used
in TokenFlow for video-based editing following the officially
released code by RAV [16]
CoDeF CoDeF’s editing process involves modifying a canon-
ical image via Instruct-Pix2Pix and generating the final
edited video according to the deformation field. For the



other procedures, we follow the officially released code by
CoDeF [10] for data processing, training, and editing.
Insturct-NeRF2NeRF Compared with the original setting
in IN2N [6], instead of training the model from scratch
and iteratively updating the dataset. We selected a subset
containing 200 images with our novel view synthesis as
psueduo ground-truth for the model to finetune the model. It
takes about 10 epochs to converge.

E. Metrics Detail
Peak Signal-to-Noise Ratio (PSNR). The PSNR is used
to eval the generated image quality with ground truth. It is
widely used in the field of evaluation image generation
Learned Perceptual Image Patch Similarity (LPIPS). The
LPIPS is to apply the perceptual function at the patch level to
calculate the feature distance between the generated image
and ground truth.
Structural Similarity Index (SSIM). SSIM evaluates the
visual impact of three key components: luminance, contrast,
and structure.
Blind Image Spatial Quality Evaluator (BIQ). It is a met-
ric to evaluate the generated images without ground truth.

F. Limitations

Although GaussianStyle is able to synthesize photo-realistic
and fully animatable head avatars with editing capabilities,
there are still areas for improvement:

(1) GaussianStyle relies on video tracking parameters.
Inaccurate tracking of landmarks and expressions might in-
troduce potential errors into our model, leading to artifacts
and degraded facial details. Our method could benefit from
a more accurate video tracking estimation method or correc-
tive operations.

(2) GaussianStyle utilizes tracking parameters for Gaus-
sian Point Deformation, which could introduce errors due to
a lack of explicit regularization for landmark matching. In
addition, the tracking always present the average expression
but cannot capture the extreme expressions. Exploring more
robust and accurate techniques could open new directions
for future work.

(3) GaussianStyle is still sensitive to extreme views and
poses. For out-of-domain camera views and head poses,
our methods show degradation in rendering, as illustrated in
Fig. 13.

G. Ethical Consideration
Our research primarily focuses on simulating high-fidelity
facial avatars. However, due to its photo-realistic facial ren-
dering capabilities, there exists a potential for misuse. For
example, creating speech videos of public figures portray-
ing events or statements that never occurred. The risk of
such abuses is a longstanding concern in the field of AI-

synthesized photo-realistic humans, evident in phenomena
like deepfake swapping and talking head generation.

While it is challenging to completely prevent the misuse
of this technology, our paper contributes by providing a tech-
nical analysis of facial synthesis. This insight allows users
to better understand the field and recognize the limitations of
AI synthesis to a certain extent, including aspects like tooth
detail and temporal consistency.

Furthermore, we advocate for responsible usage prac-
tices. These include measures like embedding watermarks
in generated videos and employing synthetic face detection
technologies for photo-realistic portraits. Such steps are cru-
cial in mitigating the risks associated with this technology.
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