Current human motion synthesis frameworks rely on global action descriptions, creating a modality gap that limits both motion understanding and generation capabilities. A single coarse description, such as run, fails to capture details such as variations in speed, limb positioning, and kinematic dynamics, leading to ambiguities between text and motion modalities. To address this challenge, we introduce KinMo, a unified framework built on a hierarchical describable motion representation that extends beyond global actions by incorporating kinematic group movements and their interactions. We design an automated annotation pipeline to generate high-quality, fine-grained descriptions for this decomposition, resulting in the KinMo dataset and offering a scalable and cost-efficient solution for dataset enrichment. To leverage these structured descriptions, we propose Hierarchical Text-Motion Alignment that progressively integrates additional motion details, thereby improving semantic motion understanding. Furthermore, we introduce a coarse-to-fine motion generation procedure to leverage enhanced spatial understanding to improve motion synthesis. Experimental results show that KinMo significantly improves motion understanding, demonstrated by enhanced text-motion retrieval performance and enabling more fine-grained motion generation and editing capabilities.